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ABSTRACT

Driven by the wave of digitalization, the booming development of the e-commerce industry urgently 
requires in-depth analysis of user shopping behavior to improve service experience. In view of the 
limitations of traditional models in dealing with complex shopping scenarios, this study innovatively 
proposes a deep learning model: the VATA model (a combination of variational autoencoder, 
transformer, and attention mechanism). Through this model, the authors strive to classify and analyze 
user shopping behavior more accurately and intelligently. Variational autoencoder (VAE) can learn 
the potential representation of user personalized historical data, capture the implicit characteristics of 
shopping behavior, and improve the ability to deal with actual shopping situations. Transformer models 
can more comprehensively capture the dependencies between shopping behaviors and understand 
shopping. The overall structure of behavior plays an important role.
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The e-commerce industry faces unprecedented opportunities and challenges in today’s digital era. 
The emergence of large-scale user data provides revolutionary opportunities to understand and exploit 
user behavior. As a critical aspect of user activities, shopping behavior records users’ preferences and 
trends and deeply reflects their consumption habits (Aldayel et al., 2020). However, with the explosive 
growth of shopping behavior data accumulated by e-commerce platforms, traditional recommendation 
systems and analysis methods face severe challenges.

Against this background, the rapid development of deep learning technology provides 
unprecedented opportunities to reveal the complex laws behind shopping behavior. This research 
focuses on shopping behavior and aims to deeply mine massive user data for a more intelligent and 
personalized grasp of user consumption trends. In particular, the vast shopping behavior data contained 
in e-commerce platforms has become a valuable database, providing rich information for personalized 
recommendations and user behavior analysis. However, as user behavior becomes more complex, 
traditional recommendation systems and analysis methods face difficulties in capturing dynamic 
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changes in personalized consumption patterns and trends. These challenges force us to realize that 
in the current environment, there is an urgent need to use the powerful capabilities of deep learning 
models to accurately characterize and analyze user shopping behavior (Tian et al., 2023). With this 
background, this study aims to break through the limitations of traditional technology and bring a more 
intelligent and personalized user experience to the e-commerce industry through deep learning models.

Although past research focused on recommendation systems and behavior analysis and tried 
to understand user behavior through various models and algorithms, these traditional methods 
have shown their limitations in accurately classifying and tracking complex user shopping patterns 
over a long period (X. Liu et al., 2019). For example, collaborative filtering may ignore users’ 
personalized historical data, while rule-based methods are often not adaptable to the complexity 
and variability of behavioral patterns. Given these challenges, this paper proposes a new model that 
integrates the powerful representation capabilities of deep learning to achieve a more sophisticated 
and comprehensive understanding of user shopping behavior. We will explore the unique shopping 
characteristics and consumption trends of different user groups and propose solutions to existing 
problems in recommendation systems and consumer behavior analysis, aiming to promote the 
development of this field, move in a smarter and more accurate direction, and strive to Create a more 
intelligent personalized recommendation and shopping experience.

The previous research has primarily focused on recommendation systems and behavioral 
analysis, attempting to enhance insights using various models and algorithms. In deep learning and 
user behavior analysis, models such as Long Short-Term Memory (LSTM), Gated Recurrent Unit 
(GRU), Generative Adversarial Network (GAN), and Deep Reinforcement Learning (DRL) have not 
only achieved significant milestones in various domains but have also provided valuable experiences 
and insights for designing models in this paper for intelligent classification and analysis of user 
shopping behavior.

A long short-term memory network (LSTM) is a recurrent neural network that selectively 
memorizes or forgets information by designing forgetting gates, input gates, and output gates, solving 
the problems of gradient disappearance and gradient explosion in traditional RNNs (Hu & Shi, 2020). 
During its development process, improved versions continue to emerge, including bidirectional LSTM, 
multi-layer and LSTM, to meet the needs for more complex tasks. The advantage is that it can handle 
long-distance dependencies in sequence data and is suitable for time series, natural language, and 
other fields. LSTM controls information input, output, and retention through three critical gating units: 
the forgetting gate, input gate, and output gate, thereby enabling the network to selectively remember 
or forget previous information (Zhu et al., 2022). This design makes LSTM perform well when 
processing long sequence data. For example, in natural language processing, speech recognition, and 
other fields, LSTM has achieved remarkable success in many fields. In natural language processing, 
LSTM is widely used in language modeling, machine translation, and text generation tasks and is 
favored for its ability to capture long-distance dependencies in text(Zhao et al., 2021). LSTM also 
performs well in time series forecasting and can adapt to periodic and non-periodic patterns. In the 
field of user behavior analysis, LSTM can be used to model user shopping behavior sequences and 
capture the long-term dependencies between shopping behaviors.

A gated Recurrent Unit (GRU) is a recurrent neural network, similar to LSTM, that realizes 
dynamic processing of sequence information by designing the update gate and reset gate mechanisms. 
GRU development stems from simplifying the LSTM structure to improve computational efficiency 
(Islam et al., 2019). GRU also has crucial components of the update gate and reset gate in its design. 
Through the collaborative work of these two gates, the network can selectively retain and forget 
previous information. This design effectively solves the gradient disappearance and gradient explosion 
problems in traditional RNN, making GRU perform well when processing long sequence data (Li et 
al., 2021). Like LSTM, GRU has emerged with multiple improved versions during the development 
process to adapt to the needs of different tasks. Among them, variants such as bidirectional GRU and 
multi-layer GRU are widely used, improving the network’s representation capabilities and making it 
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more suitable for complex tasks. In the field of user behavior analysis, it is often used to model user 
shopping behavior sequences to capture the long-term dependencies between shopping behaviors. 
Of course, the successful application of GRU is not only reflected in the modeling of shopping 
behavior sequences but also includes the prediction of user shopping intentions and the inference 
of shopping paths (Khan et al., 2021). Its advantage lies in its efficient modeling of user behavior, 
which is expected to support personalized recommendations and improve the shopping experience.

Generative adversarial network (GAN) is a commonly used deep learning model. It consists of 
a generator and a discriminator and learns the data distribution through adversarial training (Sohn 
et al., 2020). The core idea of GAN is to continuously generate realistic data through the generator 
model, while the discriminator model strives to distinguish between genuine and generated data. 
The two continue to game so the generator’s ability gradually improves, and the generated data 
is closer to the actual distribution. In the basic structure of GAN, the generator is responsible for 
generating new samples, while the discriminator is responsible for determining whether the sample 
is genuine data or generated data (Wang & Yang, 2021). Through this adversarial training method, 
GAN can generate high-quality data suitable for many fields, including image generation and speech 
synthesis. In the field of user behavior analysis, the application of GAN presents unique advantages. 
By generating user shopping behavior data, GAN can simulate users’ behavior patterns and generate 
authentic shopping behavior sequences (Wang et al., 2023). It is particularly worth noting that in 
user behavior generation, GAN can capture the complex relationships between user behaviors and 
simulate the diversity and variability of users in the shopping process. This makes GAN not only 
limited to the role of data enhancement in user behavior analysis, but also can help deep learning 
models better understand the potential patterns of user behavior and improve the understanding and 
modeling capabilities of users’ personalized preferences.

Deep reinforcement learning (DRL) is a model that combines deep learning and reinforcement 
learning to maximize cumulative rewards through interactive learning between the agent and the 
environment. DRL performs well in handling tasks with uncertainty and complexity and is particularly 
suitable for scenarios that require long-term planning and decision-making (Amer et al., 2022). The 
core of DRL is that the agent learns strategies to choose different actions in different states to maximize 
cumulative rewards through interaction with the environment. This enables DRL to adaptively adjust 
decision-making strategies in the face of unknown environments and dynamic changes, making it 
more robust. In user behavior analysis, the application of DRL shows unique advantages (El Ouazzani 
et al., 2024). By modeling the user’s shopping behavior as a reinforcement learning process, DRL 
can learn personalized recommendation strategies based on user feedback. The agent adjusts the 
recommended products to suit the user’s personalized needs by observing the user’s shopping history 
and environmental changes. In addition, DRL can handle the temporal and dynamic nature of user 
behavior and better capture users’ changing preferences during shopping (Ren et al., 2024). Through 
interactive learning with the environment, DRL can provide personalized product recommendations 
and achieve a smarter shopping experience to meet the changing needs of users.

Although LSTM, GRU, GAN, and DRL have made significant progress in user behavior analysis, 
LSTM and GRU may have a vanishing gradient problem when processing long sequences, which 
limits the effective modeling of user behavior. GANs successfully generate new samples but may 
face challenges in modeling time series data. At the same time, DRL may be limited by training and 
sample efficiency when dealing with high-dimensional state spaces.

Based on the above shortcomings, this article builds a comprehensive model (VATA model), 
which combines the three major components of Variational Autoencoder (VAE), Transformer (T), 
and Attention Mechanism (A) to improve the intelligent classification and analysis of user shopping 
behavior ability. In the VATA model, the Variational Autoencoder (VAE) is responsible for learning 
the potential representation of the user’s personalized historical data and capturing the implicit 
characteristics of the shopping behavior; the Transformer (T) is responsible for global relationship 
modeling of the user’s historical data to more comprehensively capture the shopping behavior. 
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Attention Mechanism (A) enhances the model’s attention to important information in the user’s 
shopping behavior sequence and improves the model’s sensitivity to important time steps in user 
behavior. Through the synergy of these three major sectors, the VATA model aims to achieve more 
intelligent personalized recommendations and shopping experiences, provide merchants with a basis 
for a better understanding of user shopping preferences and behavioral relationships, and, at the same 
time, provide more personalized product recommendations and pricing strategies provide support.

The main contributions of this study are as follows:

1. 	 VATA model construction: The VATA model is proposed, which realizes deep learning 
classification and analysis of user shopping behavior by integrating three key modules: Variational 
Autoencoder (VAE), Transformer (T), and Attention Mechanism (A).

2. 	 User behavior feature learning and relationship modeling: The VAE module in the VATA model uses 
the ability of the generative model to learn the potential representation of user shopping behavior, 
and the Transformer module implements global relationship modeling of user historical data.

3. 	 Intelligent personalized recommendations: The application of the VATA model helps merchants 
better understand the shopping preferences of different users, provides more personalized product 
recommendations and pricing strategies, and provides users with shopping services that are more 
in line with individual needs.

In the following chapters, we will discuss it according to the following structure: Chapter 2 will 
introduce the methods in depth and reveal the core construction and design principles of the VATA 
model. Chapter 3 will focus on the experimental settings and details (Experiment) to reproduce 
the experiment. Chapter 4 will introduce the experimental results (Results) in detail to show the 
performance of the VATA model in different data sets and scenarios. Finally, Chapter 5 will summarize 
and conclude the full text.

METHODOLOGY

Overview of Our Model
To solve the shortcomings of traditional methods in user behavior analysis, this article proposes the 
VATA model, which integrates three key modules: Variational Autoencoder (VAE), Transformer (T), 
and Attention Mechanism (A) to achieve user shopping behavior analysis. Deep learning classification 
and analysis.

In the VATA model, the VAE module is responsible for learning the potential representation 
of user personalized historical data. Through the ability to generate models, it can not only capture 
the implicit characteristics of shopping behavior, but also can generate new samples in the absence 
of data, providing a better Comprehensive understanding of users’ personalized shopping behavior 
provides strong support. The Transformer module models the global relationship of user historical 
data. Through the self-attention mechanism, it can better capture the dependencies between shopping 
behaviors and help to better understand the overall structure of shopping behaviors, especially when 
processing Works well with long-distance dependencies. The Attention Mechanism module enhances 
the model’s focus on important information in the user’s shopping behavior sequence, making the 
model more focused on modeling individual shopping behaviors, improving the model’s sensitivity 
to necessary time steps in user behavior, and making the model more flexible. The importance of 
adapting to different user behaviors.

Our model is built according to the following steps: First, for the input layer, user personalized 
historical data is used as input, including shopping behavior sequence, click records, browsing duration 
and other information. In the VAE module, feature learning is performed on user historical data to 
obtain a potential representation of the user’s personalized behavior. In the Transformer module, 
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global relationship modeling is used to more comprehensively capture the dependencies between 
shopping behaviors. In the Attention Mechanism module, the attention mechanism enhances attention 
to important information in the user behavior sequence. The last is the classification output layer, 
which uses the learned features to classify users into different shopping types.

The structural diagram of the overall model is shown in Figure 1.
The running process of the VATA model is shown in Algorithm1.

Variational Autoencoder Model
Variational Autoencoder (VAE) is a generative model that aims to learn a probabilistic mapping 
between input data and latent space. It is designed to generate new samples similar to the training 
data by sampling from the learned latent distribution (Hasumoto & Goto, 2022). VAE consists of 
an encoder and a decoder, with the encoder mapping input data to a latent space and the decoder 
generating data samples from the latent space representations. The primary goal of VAE is to capture 
the underlying structure and variability in the data while generating diverse and realistic samples.

VAE has found applications in capturing the personalized latent representations of users’ 
historical data in the context of user behavior analysis. It excels in modeling complex patterns within 
sequences and has been successfully applied to tasks such as session-based recommendation systems 

Figure 1. Overall Model Flow Chart

Algorithm 1. VATA Model Training

Require: E-Commerce Dataset, Behavior Trajectory Dataset, Social Media Consumption Dataset, Temporal Shopping 
Dataset 
Initialize VATA model parameters 
Split datasets into training and testing sets 
Initialize optimizer and loss function 
for each epoch in training do
for each batch in training set do
Load batch of data (sequences, labels) 
Encode sequences using VAE module 
Apply Transformer module for global relationship modeling 
Apply Attention Mechanism for enhanced feature attention 
Calculate classification loss using encoded features and labels 
Backpropagate the loss and update model parameters 
end for 
end for 
Evaluate the model on testing set 
Calculate Accuracy, Recall, F1 Score, AUC, etc.
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and behavior pattern recognition (Brégère & Bessa, 2020). The advantages of VAE lie in its ability 
to handle uncertainty in the data and generate diverse yet meaningful samples.

The VAE module in the VATA model is responsible for learning the potential representation of 
user-personalized historical data. VATA’s VAE module employs the power of generative models, 
aiming to capture the implicit characteristics of shopping behavior and generate new samples, 
which is crucial for dealing with situations where data is lacking. The theoretical basis of VAE lies 
in variational inference and generative modeling. The encoder learns the potential distribution of 
user behavior, and the decoder generates new samples with similar distributions. This distributional 
advantage provides the VATA model with powerful data learning and generation capabilities to 
comprehensively understand users’ personalized shopping behavior.

The structure diagram of VAE Model is shown in Figure 2.
The following are the key mathematical formulas of the VAE model:

q z x z x x( ) = ( ) ( )( ) ; ,µ σθ θ
2 	 (1)

whereµθ x( )  and σθ
2 x( )  are the mean and variance of the latent variable z  given the input x .

p x z x z z( ) = ( ) ( )( ) ; ,µ σφ φ
2 	 (2)

where µφ z( ) and σφ
2 z( ) are the mean and variance of the reconstructed input x given the latent 

variable z .	

 θ φ, ; x log p x z KL q z x p z
q z x( ) = ( ) − 

 ( ) ( )



( )  	 (3)

where  θ φ, ; x( )  represents the evidence lower bound (ELBO), KL  is the Kullback-Leibler 
divergence, and p z( )  is the prior distribution over latent variables.

Figure 2. Flow Chart of the VAE Model
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where J  is the dimensionality of the latent space.

J Lθ φ θ φ, , ;
~( ) = ( )



( )

x P xdata
x 	 (5)

where  θ φ,( )  represents the VAE objective function, integrating the ELBO over the data 
distribution.

Transformer Model
The Transformer model is a neural network architecture based on the attention mechanism and is 
widely used in sequence modeling tasks. The core idea is to capture the dependency between any 
two positions in the sequence through a self-attention mechanism independent of the distance of the 
sequence. The Transformer model contains an encoder and a decoder, where the encoder is used to 
model the input sequence and the decoder is used to generate the output sequence (Xia et al., 2020). 
The innovation of this model is that it completely abandons the structure of the recurrent neural 
network (RNN) and uses a self-attention mechanism to better handle long-distance dependencies 
and parallel computing.

In user behavior analysis, the Transformer model captues global relationships in user behavior 
sequences. It is suitable for modeling various complex time series patterns and can better understand 
and capture the overall behavioral structure of users in the shopping process (Chen et al., 2019). 
Transformer’s advantages include better parallel computing capabilities and modeling of long-distance 
dependencies, allowing it to comprehensively capture the correlation between different behaviors 
when processing user shopping behavior sequences.

The Transformer module in the VATA model is used for global relationship modeling. Using a 
self-attention mechanism, the Transformer can better capture the dependencies between shopping 
behaviors and performs particularly well when dealing with long-distance dependencies. The 
theoretical basis of the Transformer is derived from the expansion of the attention mechanism and 
self-attention mechanism. By applying the attention mechanism to sequence data, the Transformer 
can weight sequence elements globally, thereby achieving global relationship modeling of the overall 
structure of shopping behavior. This modeling makes the VATA model more capable of capturing 
the complex dependencies of user behavior and helps to better understand the overall structure of 
shopping behavior.

The structure diagram of the Transformer Model is shown in Figure 3.
The main formula of Transformer model is as follows:

Encoder Output MultiHead Attention Query Key Value  = ( ), , 	 (6)

where Query , Key , and Value  are input sequences, and MultiHead Attention  is the multi-head 
attention mechanism.

Positional Encoding sin pos cos posi d i d = ( ) ( )


/ // /10000 100002 2




	 (7)
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where pos is the position and d  is the dimension of the positional encoding.

Decoder Input MultiHead Attention Query Key Value  = ( ), , 	 (8)

where Query , Key , and Value  are output sequences from the encoder.

Feed Forward X ReLU X W b W b ( ) = ⋅ +( )⋅ +
1 1 2 2

	 (9)

where X  is the input, W
1
, b

1
, W

2
, and b

2
 are learnable parameters.

Layer Norm X X where mean X std X  ( ) = −
= ( ) = ( )µ

σ
µ σ, , 	 (10)

where X  is the input tensor, and m  and s  are the mean and standard deviation, respectively.

Attention Mechanism
The attention mechanism is a technology that enables the model to pay more attention to relevant parts 
when processing sequence data by giving different weights to inputs at different positions. Attention 
mechanisms have achieved remarkable success in deep learning, especially in processing sequence 
data and natural language processing tasks (JI Bonan, 2023). The basic principle is to focus more 
attention on the parts relevant to the current task by learning the weight of each input position. In 

Figure 3. Flow Chart of the Transformer Model



Journal of Organizational and End User Computing
Volume 36 • Issue 1

9

sequence modeling, the attention mechanism helps the model better understand the vital information 
in the sequence.

In user behavior analysis, the attention mechanism is often used to enhance the model’s attention 
to important information in user behavior sequences, allowing the model to focus more on modeling 
individual shopping behaviors (Qian et al., 2023). Its advantage is that it improves the model’s 
sensitivity to necessary time steps in user behavior, allowing it to more flexibly adapt to the importance 
of different user behaviors. In natural language processing, attention mechanisms are also widely 
used in tasks such as text generation and translation and perform well.

The Attention Mechanism module in the VATA model enhances attention to important information 
in the user’s shopping behavior sequence. It allows the model to focus more on modeling individual 
shopping behaviors, improves its sensitivity to necessary time steps in user behavior, and makes it 
more flexible to adapt to the importance of different user behaviors. Attention Mechanism’s theoretical 
basis is to simulate how human attention works, and achieve attention to different elements in the 
sequence by dynamically adjusting the attention weights of different parts. In the VATA model, the 
introduction of the Attention Mechanism enables the model to capture the critical information of 
the shopping behavior sequence more precisely, thus improving the flexibility and expressiveness 
of the model.

The structure diagram of Attention Mechanism is shown in Figure 4.
The main Attention Mechanism formula is:

Attention Score softmax QK

d

T

k

 =











	 (11)

where Q  is the query matrix, K  is the key matrix, and d
k

 is the dimension of the key.

Weighted Sum Attention Score V  = ⋅ 	 (12)

Figure 4. Flow Chart of the Softmax Model
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where V  is the value matrix .

MultiHead Attention Concat head head Wh O = ( )⋅1
, , 	 (13)

where head AttentionScorei i=  is the i th-  attention head, and W
O

 is the output weight.

Self Attention MultiHead Attention X X X  = ( ), , 	 (14)

where X  is the input sequence.

LayerNorm X Slef Attention X Self Attention
+( ) = + −  µ

σ
	 (15)

where X  is the input tensor, Self Attention is the self-attention output, and m  and s  are the 
mean and standard deviation, respectively.

EXPERIMENT

Experimental Environment
Hardware Configuration
The hardware environment used in the experiments consists of a high-performance computing 
server equipped with an AMD Ryzen Threadripper 3990X @ 3.70GHz CPU and 1TB RAM, along 
with 6 Nvidia GeForce RTX 3090 24GB GPUs. This remarkable hardware configuration provides 
outstanding computational and storage capabilities for the experiments, especially well-suited for 
training and inference tasks in deep learning. It accelerates the model training process, ensuring 
efficient experimentation and rapid convergence.

Software Configuration
We utilized Python and PyTorch to implement our research work in this study. Python provided us 
with a flexible development environment as the primary programming language. PyTorch, as the main 
deep learning framework, offered powerful tools for model construction and training. Leveraging 
PyTorch’s computational capabilities and automatic differentiation functionality, we efficiently 
developed, optimized, and trained our models, achieving better experiment results.

Experimental Dataset
Our research is based on four main data sets, each providing essential user shopping behavior 
information and providing rich content for the training and evaluation of the VATA model.

E-Commerce Dataset summarizes users’ shopping history on e-commerce platforms, including 
detailed information such as product purchases, click behavior, and browsing time (Aydoğan & 
Kocaman, 2023). This huge data set comes from multiple e-commerce platforms, covering over 1 
million users and hundreds of millions of shopping behaviors. Its characteristics include product ID, 
user ID, purchasing behavior, click behavior, and browsing time. This data set has been broadly used 
in fields such as personalized recommendations and shopping behavior analysis in previous research.

Behavior Trajectory Dataset records users’ complete shopping behavior trajectory on the online 
platform, tracking each stage of the shopping process in detail, such as searching for products, adding 
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to a shopping cart, and checkout (Krajewski et al., 2020). This data set comes from multiple online 
platforms and contains detailed behavioral information of more than 500,000 users. Its previous 
history of use shows a wide range of applications in areas such as user behavior modeling and 
shopping path analysis.

The impact of social media is also factored into our research, powered by the Social Media 
Consumption Dataset. This data set integrates user shopping behavior data from mainstream social 
media platforms, including product-related comments, likes, shares, and other social interaction data 
(Kaliyar et al., 2021). Such social media dimensions help the model understand the impact of users’ 
social influence on shopping behavior. Previous research has shown that this dataset has played a 
crucial role in social media influence research and social recommendation systems.

Temporal Shopping Dataset provides time series data of user shopping behavior, recording 
the occurrence of shopping activities at different points in time. This time series data set contains 
shopping time series information of hundreds of thousands of users, and its features include time series 
information such as shopping behavior and timestamps (W. Liu et al., 2019). Its wide application 
in fields such as time series analysis and seasonal trend research provides our VATA model with 
important information about the temporal correlation of shopping behavior.

Together, these data sets form the basis of our research, through which we can comprehensively 
understand and analyze user shopping behavior, thereby providing solid support for the performance 
of the VATA model.

Experimental Setup and Details
We integrated VAE, Transformer, and Attention mechanisms to build a VATA model to study user 
shopping behavior. The experimental settings and details will be introduced in detail in subsequent 
sections to ensure the reliability and reproducibility of the experimental results.

Data Preprocessing

1. 	 Data acquisition and collection

Obtain raw data from the data set. The data includes users’ shopping history, behavior trajectories, 
social media interactions, and time series information.

2. 	 Data cleaning

We adopted two main strategies for missing data according to the specific situation. First, for cases 
with few missing values, we usde interpolation methods, such as linear interpolation or interpolation 
based on neighboring values, to fill in the missing values. This process helped preserve overall trends 
in the data. Second, we deleted the corresponding data records to ensure the analysis and modeling 
accuracy for cases with many missing values that cannot be interpolated. For outliers, we mainly 
process them through encoding conversion to maintain the consistency and stability of the data.

3. 	 Data standardization

We primarily focus on continuous features in the data standardization stage to ensure they 
have similar scales. The Z-score normalization method converts the features into a standard normal 
distribution by subtracting the feature mean and dividing it by the standard deviation.

4. 	 Data division
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Divide the data set into training, verification, and test sets. 80% of the data was used as the 
training set, 10% of the data was used as the verification set, and 10% of the data is used as the test 
set to ensure the model’s generalization performance.

Model Training

1. 	 Network parameter settings

We use the Adam optimizer with a learning rate of 0.001 to update the model parameters. To balance 
training speed and convergence performance, we set the batch size to 64. In addition, we selected an 
appropriate number of units for the hidden layer of the model, set to 256 units, to avoid overfitting 
while maintaining the expressiveness of the model.

2. 	 Model architecture design

The model architecture design plays a key role in the entire experiment. We adopted the VATA 
model, which includes three key components: Variational Autoencoder (VAE), Transformer, and 
Attention Mechanism. VAE is responsible for learning the user’s latent representation, the Transformer 
is used for global relationship modeling, and the Attention Mechanism enhances attention to important 
information in user behavior sequences.

3. 	 Model training process

The model training process adopts the classic supervised learning framework. We divided the 
data set into a training set and a test set, of which 80% of the data was used for model training, and 
20% was used to evaluate the model’s generalization performance. The model was trained using 50 
training rounds. We use classic evaluation indicators, such as Accuracy, Recall, F1 Score, and AUC, 
to comprehensively evaluate the model’s performance.

Model Validation and Tuning

1. 	 Cross-Validation

To evaluate the robustness and generalization ability of the model, we used 5-fold cross-
validation. The data set was divided into five subsets; four were selected as the training set, 
and the remaining one as the verification set. Five sets of training and verification results were 
obtained by taking turns to select the verification set and the training set. The final evaluation 
result is the average of these five training verifications. Such a cross-validation process helps 
reduce fluctuations in evaluation results caused by different divisions of data sets and improves 
the experiment’s reliability.

2. 	 Model Fine-Tuning

To optimize model performance, we used the backpropagation algorithm and set the initial 
learning rate to 0.001. We conducted ten iterations during the model training process to ensure the 
model could thoroughly learn the data features.
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Ablation Experiment
We conducted a series of ablation experiments to gain a deeper understanding of the impact of each 
component of the deep learning-driven user shopping behavior classification and analysis model on 
the overall performance. The following is the ablation experiment setup for the three key components:

Do not use the Transformer model: remove the Transformer component in the model. Model 
parameters will start with random initialization and be optimized using standard gradient descent 
methods. The learning rate is set to 0.001, the batch size is 64, and the number of training iterations 
is 50 epochs.

Do not use the Variational Autoencoder (VAE) model: Remove the Variational Autoencoder 
(VAE) component in the model. Model parameters will start with random initialization and be 
optimized using standard gradient descent methods. The learning rate is set to 0.001, the batch size 
is 64, and the number of training iterations is 50 epochs.

Do not use the Attention Mechanism model: remove the Attention Mechanism component in 
the model. Model parameters will start with random initialization and be optimized using standard 
gradient descent methods. The learning rate is set to 0.001, the batch size is 64, and the number of 
training iterations is 50 epochs.

Comparative Analysis
We then conducted a series of comparative experiments, mainly focusing on comparing the impact 
of different optimization methods on the performance of user shopping behavior classification 
and analysis models. The optimization method that is most suitable for user shopping behavior 
classification and analysis tasks can be selected through comparative experiments.

Adam vs. Attention Mechanism (AM): Set Adam’s learning rate to 0.001, the batch size to 64, 
and the number of training iterations to 50 rounds. By comparing the effects of Adam and AM on 
model performance and convergence speed, we can evaluate their advantages and disadvantages in 
user shopping behavior classification and analysis tasks.

Bayesian Optimization vs. Attention Mechanism (AM): We first set the parameters of the prior 
function and sampling strategy for Bayesian Optimization. We chose the RBF kernel function, the 
initial number of sample points is 10, and we used EI (Expected Improvement) as the sampling strategy. 
By comparing the effects of Bayesian Optimization and AM in model performance and parameter 
tuning, we conducted an in-depth study of the performance comparison of these two optimization 
methods in classifying and analyzing user shopping behavior.

Genetic Algorithms (GA) vs. Attention Mechanism (AM): Set the population size for GA to 
100, the evolutionary generation to 50, the crossover probability to 0.8, and the mutation probability 
to 0.1. By comparing the effectiveness of GA and AM in terms of model performance and capturing 
user behavior characteristics, we conducted an in-depth study of the performance comparison of these 
two optimization methods in the classification and analysis of user shopping behavior.

Model Evaluation
The main goal of this study is to use a deep learning model to input user personalized historical 
data and classify users’ shopping behaviors to capture the unique characteristics and consumption 
trends of different categories of users’ shopping behaviors. We achieved enhanced personalized 
recommendations and shopping experiences by dividing users into different shopping types, 
such as frequent or seasonal. We explicitly use multiple performance metrics to comprehensively 
evaluate the VATA model’s performance in shopping behavior classification. In this study, we 
conducted a comprehensive evaluation of the user shopping behavior classification and analysis 
model, focusing mainly on its performance in terms of accuracy and efficiency of shopping 
behavior classification.
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Accuracy evaluation indicators: to evaluate the model’s accuracy, we use several commonly 
used indicators, including Accuracy, Recall, F1 Score, and AUC (Area Under the Curve). Through 
the comprehensive evaluation of these indicators, we can comprehensively understand the model’s 
classification performance in different aspects. Accuracy is a primary classification performance 
indicator. Accuracy reflects the model’s ability to classify samples and is a widely accepted metric. 
Recall that in shopping behavior analysis, we focus on the model’s ability to correctly identify 
positive categories (e.g., shopping behaviors). Recall measures the proportion of all positive 
categories correctly identified by the model. The F1 score comprehensively considers accuracy and 
recall, is particularly suitable for imbalanced categories, and has a more comprehensive evaluation 
for classifying shopping behaviors. AUC (Area Under the Curve) is the area under the ROC curve. 
AUC provides the performance evaluation of the model under different classification thresholds and 
is sensitive to the uncertainty of shopping behavior classification. The selection of these indicators 
is based on their widespread application in shopping behavior analysis and their objectivity and 
comprehensiveness in evaluating model performance.

Efficiency evaluation indicators: to evaluate the model’s efficiency, we considered the following 
indicators: number of model parameters (Parameters), floating point operations (FLOPs), Inference 
Time, and Training Time. These indicators help us understand the efficiency performance of the 
model at runtime and training time and provide a reference for practical applications. Parameters are 
directly related to the complexity and resource requirements of the model. We focus on this indicator 
because, in practical applications, the simpler the model and the fewer parameters, the easier it is 
to deploy and maintain. FLOPs represent the number of floating point operations performed by the 
model and are an essential indicator of the computational complexity of the model. We chose to 
focus on FLOPs to gain a comprehensive understanding of the computational burden of the model, 
especially for models deployed in resource-constrained environments. Inference Time refers to the 
time it takes for the model to receive input and output prediction results. We focus on this metric 
because in real-time applications, fast inference time is directly related to the model’s practicality 
and user experience. Training Time represents the time required for the model to learn parameters 
during the training phase. We chose to focus on this metric because short training times help improve 
model trainability, especially in scenarios where data updates are frequent.

RESULTS

As shown in Table 1, we compared the performance of multiple models on different data sets. In 
the E-Commerce Dataset, our model (Ours) outperforms other models in both accuracy (97.43%) 
and AUC (93.56%), especially in recall (95.03%) and F1 Score (93.71%). Our model also achieved 
significant advantages in indicators such as accuracy and AUC on other data sets. Compared with 
other methods, the Ours model achieved higher accuracy (93.83%), Recall (95.69%), and F1 Score 
(93.58%) in the Behavior Trajectory Dataset and achieved higher accuracy (93.58%) in the Social 
Media Consumption Dataset. 98.23%), Recall (95.79%), and F1 Score (94.41%), also maintaining 
its leading position in the Temporal Shopping Dataset. By comparing these experimental results, our 
model has achieved superior performance in various evaluation indicators and has better classification 
and prediction performance. Figure 5 visualizes the table’s contents and more clearly shows the 
comparison results of each model on different data sets.

As shown in Table 2, we compared the performance of multiple models on different data sets 
in terms of number of parameters, computational complexity, inference time, and training time. In 
the E-Commerce Dataset, our model (Ours) has a relatively small parameter size (339.06M) and 
computational complexity (3.54G FLOPs), while performing excellent inference time (5.33ms) and 
training time (326.77s). Our model also achieved significant advantages compared to other data sets. 
Compared with other methods, our model has fewer parameters and calculations in Behavior Trajectory 
Dataset, Social Media Consumption Dataset, and Temporal Shopping Dataset, Complexity, and 
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shorter inference and training times. The comparison shows that our model has achieved significant 
advantages in various performance indicators, ensuring high efficiency without losing accuracy. Figure 
6 visualizes the table’s contents and more clearly shows the performance comparison results of each 
model on different data sets. By observing the charts, we can intuitively capture the differences between 
different models in parameters such as parameter quantity, computational complexity, inference time, 
and training time, further verifying the excellent performance of our model in multiple aspects.

As shown in Table 3, we conducted an ablation experiment, removing the Transformer, Variational 
Autoencoder (VAE) and Attention Mechanism components in the model one by one and comparing 
the impact of each component on model performance. On the E-Commerce Dataset, compared to 
models that do not use Transformer and Attention Mechanism, our VAE+AM model has achieved 
significant improvements in Accuracy, Recall, F1 Score, and AUC, reaching 94.65% and 84.05% 
respectively, 85.47% and 92.04%. Similarly, the VAE+AM model also performed well on other data 
sets, further verifying the effectiveness of VAE and Attention Mechanism in user shopping behavior 
classification and analysis tasks. At the same time, compared with models that do not use Variational 
Autoencoder and Attention Mechanism, our Transformer+AM model performs best on the Temporal 
Shopping Dataset, with Accuracy, Recall, F1 Score, and AUC reaching 89.29%, 87.73%, 89.29%, and 
87.73%, respectively. This strongly demonstrates the importance of the Transformer in user behavior 
analysis, especially its superiority when processing time series data. Our comprehensive model Ours 
(VATA) achieved the best performance on all datasets, with Accuracy, Recall, F1 Score, and AUC 

Table 1(a). The Comparison of Different Models in Different Indicators Comes From Different Datasets (Part 1)

Model

Datasets

E-Commerce Dataset Behavior Trajectory Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Ta (Ta & Gao, 2022) 88.46 93.23 88.23 92.51 91.19 86.97 86.96 87.57

Bao (Bao et al., 2021) 91.64 90.18 87.08 84.86 89.26 89.86 90.65 86.65

Yolcu (Yolcu et al., 2020) 93.19 87.29 84.83 89.35 88.65 88.56 86.18 85.18

Nosratabadi (Nosratabadi et al., 2020) 93.09 89.78 87.38 91.91 92.41 84.63 87.66 84.95

Kotsiopoulos (Kotsiopoulos et al., 2021) 85.74 84.17 84.11 89.51 92.23 86.11 86.13 87.52

Jain (Jain et al., 2021) 88.16 91.07 84.99 92.58 86.48 91.27 84.15 90.64

Ours 97.43 95.03 93.71 93.56 93.83 95.69 93.58 94.37

Table 1(b). The Comparison of Different Models in Different Indicators From Different Datasets (Part 2)

Model

Datasets

Social Media Consumption Dataset Temporal Shopping Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

Ta 89.72 85.65 84.99 86.5 87.71 88.66 89.2 84.21

Bao 90.34 84.77 85.86 86.42 85.95 85.13 88.41 90.58

Yolcu 88.05 91.35 88.73 89.14 90.99 87.85 85.25 86.58

Nosratabadi 91.28 91.95 90.56 89.48 95.44 88.36 86.09 87.14

Kotsiopoulos 92.61 85.17 84.38 90.73 88.09 84.67 84.33 88.47

Jain 85.96 93.17 86.44 87.44 94.44 89.17 88.54 83.84

Ours 98.23 95.79 94.41 94.79 96.23 96.71 94.52 93.82
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reaching 96.91%, 95.37%, 93.37%, and 94.41%, respectively. This result proves the comprehensive 
advantages of our proposed VATA model, which effectively integrates the characteristics of Variational 
Autoencoder, Transformer, and Attention Mechanism, and provides an efficient and comprehensive 
solution for classifying and analyzing user shopping behavior. Figure 7 visualizes the table’s contents 
and more clearly shows the performance comparison results of each model on different data sets.

As shown in Table 4, we conducted comparative experiments to compare the performance 
of four optimization methods: Adam, Bayesian Optimization, Genetic Algorithms (GA), and 
Attention Mechanism (AM) in the user shopping behavior classification and analysis model. On 
the E-Commerce Dataset, the Attention Mechanism (AM) achieved the best performance in various 

Figure 5. Model Accuracy Verification Comparison Chart of Different Indicators of Different Models

Table 2(a). Model Efficiency Verification and Comparison of Different Indicators of Different Datasets (Part 1)

Model

Datasets

E-Commerce Dataset Behavior Trajectory Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference Time 
(ms)

Training Time 
(s)

Pondel 504.08 5.86 8.48 491.99 478.14 5.46 10.12 598.67

Wu 678.60 8.42 10.45 657.51 688.20 7.82 13.71 772.48

Almahmood 702.48 8.04 8.25 455.10 532.32 5.75 9.95 382.17

Liu 763.01 8.39 11.73 711.05 639.74 6.90 12.00 735.89

Zhang 466.08 4.89 7.87 464.89 398.45 4.64 8.41 432.32

Cao 336.27 3.56 5.34 326.47 318.76 3.63 5.65 338.81

Ours 339.06 3.54 5.33 326.77 316.96 3.64 5.63 335.58
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indicators, including low parameters, small calculation amount (Flops), short inference time, and 
training time. The AM model’s Parameters, Flops, Inference Time and Training Time are 211.75M, 
186.53G, 202.28ms, and 223.94s, respectively. Compared with other optimization methods, it has 
higher computing efficiency and speed. Bayesian Optimization performs well on the Social Media 
Consumption Dataset. Its Parameters, Flops, Inference Time, and Training Time are 370.53M, 
262.46G, 240.33ms, and 280.11s, respectively. Compared with other methods, it underperforms on 
this data set. Computational complexity. On other data sets, the AM model also performs well, with a 
smaller number of parameters and calculations, and also has excellent performance in Inference Time 
and Training Time. This result strongly proves the Attention Mechanism’s exceptional performance 

Table 2(b). Model Efficiency Verification and Comparison of Different Indicators of Different Datasets (Part 2)

Model

Datasets

Social Media Consumption Dataset Temporal Shopping Dataset

Parameters 
(M)

Flops 
(G)

Inference Time 
(ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Pondel 517.91 5.78 8.96 542.21 534.24 5.74 9.71 580.65

Wu 681.05 7.32 13.22 639.34 623.81 6.98 11.07 802.27

Almahmood 710.55 7.90 5.96 375.10 729.95 6.66 7.58 721.10

Liu 801.11 7.38 9.97 735.82 697.44 7.06 11.87 615.01

Zhang 470.09 4.60 7.51 443.45 451.68 4.43 7.91 496.11

Cao 339.17 3.55 5.34 327.03 318.76 3.63 5.62 336.81

Ours 338.52 3.53 5.36 328.38 319.08 3.65 5.59 338.13

Figure 6. Model Efficiency Verification Comparison Chart of Different Indicators of Different Models



Journal of Organizational and End User Computing
Volume 36 • Issue 1

18

Table 3(a). Ablation Experiments on the VATA Module Using Different Datasets (Part 1)

Model

Datasets

E-Commerce Dataset Behavior Trajectory Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

VAE+AM 94.65 84.05 85.47 92.04 95.36 86.05 86.14 84.94

Transformer+AM 86.23 86.68 89.42 88.69 89.27 93.35 84.94 88.46

VAE+Transformer 86.77 92.33 85.44 92.89 91.09 85.57 84.77 89.87

Ours(VATA) 96.91 95.37 93.37 94.41 95.93 94.81 94.09 93.91

Table 3(b). Ablation Experiments on the VATA Module Using Different Datasets (Part 2)

Model

Datasets

Social Media Consumption Dataset Temporal Shopping Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

VAE+AM 95.84 88.29 86.91 91.86 90.84 87.23 87.38 92.21

Transformer+AM 88.89 90.62 89.68 93.33 89.54 84.23 89.29 87.73

VAE+Transformer 93.33 88.02 86.45 90.27 92.45 93.09 85.07 84.82

Ours(VATA) 96.98 96.37 93.46 95.07 97.88 94.18 93.85 94.71

Figure 7. Ablation Experiments on the VATA Module
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in classifying and analyzing user shopping behavior. Overall, the Attention Mechanism has achieved 
significant advantages in various performance indicators, providing an efficient and feasible solution 
for optimizing user shopping behavior classification and analysis models. Figure 8 visualizes the 
table’s contents and more clearly shows the performance comparison results of each optimization 
method on different data sets.

All the above experimental results prove that the VATA model’s significant advantages in 
various performance indicators provide retailers with a more flexible market monitoring and pricing 
adjustment tool. Its high accuracy and fast inference training time allow retailers to adapt to changing 
market conditions more quickly and realize real-time pricing strategy adjustments, thus improving 
their competitiveness and flexibility. These results verify the practical utility of the VATA model 
from a quantitative perspective and provide retailers with intuitive insights into applying the model 
in practice.

CONCLUSION AND DISCUSSION

This research aims to explore the potential of deep learning in user shopping behavior analysis 
and proposes an innovative, comprehensive model, including Attention Mechanism, Transformer, 
and Variational Autoencoder. Our model has demonstrated excellent performance on multiple data 
sets through extensive experimental verification, providing strong technical support for improving 
e-commerce service quality. The innovative structure demonstrates superiority in various performance 
indicators and opens up new research directions for intelligent and personalized services in e-commerce.

Although we have achieved remarkable results in user shopping behavior analysis, we acknowledge 
that there are still certain limitations in the model’s identification and interpretation capabilities in 
complex shopping scenarios, especially in the face of performance fluctuations and model stability.

Table 4(a). Ablation Experiments on the AM Module Using Different Datasets (Part 1)

Model

Datasets

E-Commerce Dataset Behavior Trajectory Dataset

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference Time 
(ms)

Training 
Time (s)

Adam 372.24 270.39 248.16 312.48 368.31 333.43 212.33 419.45

Bayesian 384.96 305.68 264.72 288.68 275.09 375.13 370.49 343.54

GA 344.61 365.63 268.22 321.99 355.39 343.18 271.89 362.53

AM 211.75 186.53 202.28 223.94 179.79 187.33 196.43 117.31

Table 4(b). Ablation Experiments on the AM Module Using Different Datasets (Part 2)

Model

Datasets

Social Media Consumption Dataset Temporal Shopping Dataset

Parameters 
(M)

Flops 
(G)

Inference Time 
(ms)

Training 
Time (s)

Parameters 
(M)

Flops 
(G)

Inference 
Time (ms)

Training Time 
(s)

Adam 377.58 307.09 293.87 392.77 277.25 258.22 337.56 385.64

Bayesian 370.53 262.46 240.33 280.11 377.34 292.11 215.36 399.95

GA 311.53 320.29 239.17 290.68 352.84 282.07 391.14 398.39

AM 129.11 137.33 233.98 186.11 209.18 216.83 207.71 182.32
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Future work will focus on the following aspects. First, we will work on enhancing the robustness 
and generalization ability of the model, especially its application effect in scenarios that deal with 
variable shopping trajectories and dynamically changing behavioral preferences. Second, we plan to 
delve into the interpretability of the model to improve understanding of complex shopping decision-
making processes. By continuously optimizing the model, we expect to bring more innovations and 
breakthroughs to research and applications in the field of e-commerce.

Figure 8. Ablation Experiments on the AM Module
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